If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+18t+32=0
a = -16; b = 18; c = +32;
Δ = b2-4ac
Δ = 182-4·(-16)·32
Δ = 2372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2372}=\sqrt{4*593}=\sqrt{4}*\sqrt{593}=2\sqrt{593}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{593}}{2*-16}=\frac{-18-2\sqrt{593}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{593}}{2*-16}=\frac{-18+2\sqrt{593}}{-32} $
| C=-1/2c | | X^2+19x+19=0 | | 4y=3/2y-1 | | 10=-16x^2+48x+170 | | 7x-4=9-6x | | 0=4000+5x+10x^2 | | d+3/2d+1=3/4 | | -12=8x-4 | | 4(2x+1)=4x+7 | | 3•0-x=6 | | y+5/3+4=-16 | | 3x0-x=6 | | (d+3/2d+1)=3/4 | | 2=-7v+3(v+6) | | 4x+23=50 | | -9-p/9=5 | | 5+(7x-6)=15+6x | | x(x+5)=x²-5 | | 6n(3n+1)= | | -3d+61=40 | | 8(2x+1)+6=5(x-3)+7 | | 12000=8x | | 52=7|x-2|-4 | | 2x-3(3x+10)=-16 | | 5.4*x=4.2 | | f^2=289 | | 8m+2=34 | | 2x×9=93 | | -37=-4g-73 | | F(x)=1/2x+5 | | 10+p=-15 | | 28=8*(3.5+.75y)-6y |